Search results

1 – 10 of 37
Article
Publication date: 1 June 2021

Qiang Lu, Jinliang Chen, Hua Song and Xiangyu Zhou

The purpose of this study is to examine how cloud computing assimilation reduces supply chain financing (SCF) risks of small and medium enterprises (SMEs). This study also…

Abstract

Purpose

The purpose of this study is to examine how cloud computing assimilation reduces supply chain financing (SCF) risks of small and medium enterprises (SMEs). This study also investigated the mediating roles of internal and external supply chain integration between cloud computing assimilation and the SCF risks of SMEs, as well as the moderating role of environmental competitiveness.

Design/methodology/approach

Data was collected from surveys of SMEs located in China. Multiple regression analysis was used to validate the proposed theoretical model and research hypotheses.

Findings

The findings show that cloud computing assimilation could reduce the SCF risks of SMEs directly. The results also indicate that both internal and external supply chain integration mediate the relationship between cloud computing assimilation and SCF risks. Furthermore, environmental competitiveness inhibits the effects of cloud computing assimilation on SCF risks.

Originality/value

To our best knowledge, this is the preliminary study to explore the role of cloud computing assimilation in reducing the SCF risks of SMEs. Also, this study attempted to investigate the process by which cloud computing assimilation affects the SCF risks of SMEs.

Details

Journal of Enterprise Information Management, vol. 35 no. 6
Type: Research Article
ISSN: 1741-0398

Keywords

Article
Publication date: 13 May 2020

Peng Wang, Peng Wu, Xiangyu Wang, Xin Chen and Tao Zhou

Facility structures in liquefied natural gas (LNG) plants require tremendous amounts of scaffolding to facilitate relevant industrial operation and maintenance. As such, the…

Abstract

Purpose

Facility structures in liquefied natural gas (LNG) plants require tremendous amounts of scaffolding to facilitate relevant industrial operation and maintenance. As such, the productivity of scaffolding operations in turnaround maintenance (TAM) has attracted much attention in recent years. In addition, health and safety issues have been recognised as a key contributor along with productivity improvement in the LNG industry. This study aims to integrate work posture analysis into value stream mapping to achieve an optimised and balanced improvement in both productivity and health and safety.

Design/methodology/approach

A case study approach is adopted to integrate lean and work posture analysis in a TAM site. The lean improvement is conducted through value stream mapping, and the work posture analysis is conducted through the Ovako Working Posture Analysis System method. A three-step optimisation strategy is then developed for achieving optimised performance in waste reduction and work posture improvement.

Findings

It is found that the implementation of value stream mapping can help eliminate waste in the installation process, therefore eliminating potential health and safety risks. However, health and safety of onsite workers does not always improve as lean implementation intensifies. There is an optimised erection schedule that has the lowest health and safety risk within a waste reduction target.

Originality/value

In contradiction to previous studies, which rely on qualitative assessment to identify the a positive correlation between lean and health and safety, this study reveals the distinct difference between lean attributes and health and safety attributes through a quantitative assessment and is more readily to be implemented at the site level for simultaneous improvement in lean and health and safety.

Details

Engineering, Construction and Architectural Management, vol. 27 no. 9
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 24 January 2023

Xiangyu Wang, Pei He, Qinglong Zhou, Qingyuan Zhou, Manlang Cheng, Yangting Sun, Yiming Jiang, Laizhu Jiang and Jin Li

The purpose of this study is to investigate the intergranular corrosion (IGC) susceptibility of a nitrogen-containing austenitic stainless steel QN2109. The intergranular…

Abstract

Purpose

The purpose of this study is to investigate the intergranular corrosion (IGC) susceptibility of a nitrogen-containing austenitic stainless steel QN2109. The intergranular corrosion (IGC) susceptibility of a nitrogen-containing austenitic stainless steel QN2109 was investigated.

Design/methodology/approach

The double-loop electrochemical potentiodynamic reactivation (DL-EPR) tests were carried out. Scanning electron microscopy and atomic force microscopy were used to characterize the microstructure.

Findings

The optimized test condition for QN2109 was 1 M H2SO4 + 0.01 M NH4SCN at 40°C. The nose temperature of the temperature–time–sensitization (TTS) curve of QN2109 plot was approximately 750°C. Moreover, the IGC susceptibility started to appear at approximately 120 min. The Cr-depletion zone of QN2109 was generated by the formation of M23C6 rather than by the addition of nitrogen. The depth–width ratio of the grain boundaries after the DL-EPR tests decreased as the aging temperature increased. The degree of Cr depletion and size of the Cr-depletion zone at the grain boundary were reflected by the degree of sensitization and depth–width ratio, respectively.

Originality/value

The optimized test condition for DL-EPR tests of a nitrogen-containing austenitic stainless steel QN2109 was investigated. The TTS curve of QN2109 was first plotted to avoid IGC failure. The morphology of the Cr-depletion zone was reflected by the depth–width ratio.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 17 April 2023

Xiangou Zhang, Yuexing Wang, Xiangyu Sun, Zejia Deng, Yingdong Pu, Ping Zhang, Zhiyong Huang and Quanfeng Zhou

Au stud bump bonding technology is an effective means to realize heterogeneous integration of commercial chips in the 2.5D electronic packaging. The purpose of this paper is to…

Abstract

Purpose

Au stud bump bonding technology is an effective means to realize heterogeneous integration of commercial chips in the 2.5D electronic packaging. The purpose of this paper is to study the long-term reliability of the Au stud bump treated by four different high temperature storage times (200°C for 0, 100, 200 and 300 h).

Design/methodology/approach

The bonding strength and the fracture behavior are investigated by chip shear test. The experiment is further studied by microstructural characterization approaches such as scanning electron microscope, energy dispersive spectrometer and so on.

Findings

It is recognized that there were mainly three typical fracture models during the chip shear test among all the Au stud bump samples treated by high temperature storage. For solder bump before aging, the fracture occurred at the interface between the Cu pad and the Au stud bump. As the aging time increased, the fracture mainly occurred inside the Au stud bump at 200°C for 100 and 200 h. When aging time increased to 300 h, it is found that the fracture transferred to the interface between the Au stud bump and the Al Pad.

Originality/value

In addition, the bonding strength also changed with the high temperature storage time increasing. The bonding strength does not change linearly with the high temperature storage time increasing but decreases first and then increases. The investigation shows that the formation of the intermetallic compounds because of the reaction between the Au and Al atoms plays a key role on the bonding strength and fracture behavior variation.

Details

Microelectronics International, vol. 41 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 13 December 2021

Yun Teng, Boyuan Pang and Xiangyu Guo

The authors are committed to providing the Chinese government with a foundation for making decisions that will protect black land and ensure long-term agricultural development.

Abstract

Purpose

The authors are committed to providing the Chinese government with a foundation for making decisions that will protect black land and ensure long-term agricultural development.

Design/methodology/approach

Using the grounded theory approach, this study investigates the influencing factors affecting the quality of black land in Northeast China and proposes a hypothetical model for the mechanism of the influencing factors on the quality of black land in Northeast China.

Findings

The factors influencing the quality of black land include not only soil quality, ecological quality and environmental quality, but also economic quality and management quality, and can be classified into five categories. There are complex influence relationships between various factors and black land quality, with soil quality, ecological quality, environmental quality and management quality having a positive influence on economic quality. Soil quality, ecological quality and environmental quality are all improved as a result of good management. Black land quality is influenced positively by environmental quality, economic quality and management quality.

Research limitations/implications

The quality of black land is a major concern in terms of food production and long-term agricultural development. The black land in Northeast China was chosen as the subject of this study, and the research findings have some limitations. The next step will be to expand from studying the black land in Northeast China to the black land worldwide.

Originality/value

In Northeast China, the quality of the five dimensions of black land must be improved in a coordinated and consistent manner.

Details

Kybernetes, vol. 52 no. 3
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 31 May 2019

Abdullahi Babatunde Saka and Daniel W.M. Chan

This paper aims to review the status of development of building information modelling (BIM), its trends and themes across the six continents of the world.

Abstract

Purpose

This paper aims to review the status of development of building information modelling (BIM), its trends and themes across the six continents of the world.

Design/methodology/approach

A total of 914 journal articles sought from the search engine of Web of Science (WOS) based on the country/region option of the WOS to group them into continents. A best-fit approach was then applied in selecting the suitable software programmes for the scientometric analysis and comparisons and deductions were made.

Findings

The findings revealed that there are differences in the development of BIM across the six continents of the world. South America and Africa are lagging in the BIM research and Australia and Asia are growing, whilst Europe and North America are ahead. In addition, there exist differences in the research themes and trends in these continents as against the single view presented in extant studies.

Originality/value

This study introduced a new approach to carry out a comparative and taxonomic review and has provided both academic researchers and industrial practitioners with a clear status of development of BIM research and the trend across the six continents of the world.

Details

Construction Innovation, vol. 19 no. 3
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 12 June 2017

Xiang Yu, Degao Zou, Xianjing Kong and Long Yu

A large, uneven settlement that is unfavourable to dam safety can occur between a concrete cut-off wall and the high-plasticity clay of earth core dam built on alluviums. This…

Abstract

Purpose

A large, uneven settlement that is unfavourable to dam safety can occur between a concrete cut-off wall and the high-plasticity clay of earth core dam built on alluviums. This issue has been often studied using the small-strain finite element (FE) method in previous research. This paper aims to research the interaction behaviour between a concrete cut-off wall and high-plasticity clay using large-deformation FE analyses.

Design/methodology/approach

The re-meshing and interpolation technique with a small-strain (RITSS) method was performed using an independently developed program and adopted for large-deformation FE analyses, and a suitable element size for the high-plasticity clay region was suggested. The layered construction process of an earth core dam built on thick alluviums was simulated using the RITSS method incorporating a hyperbolic model for soil.

Findings

The RITSS method is an effective technique for simulating the soil–structure interaction during dam construction. The RITSS analysis predicted a higher maximum principle stress of the concrete cut-off wall and higher stress levels in the high-plasticity clay region than small-strain FE analysis.

Originality/value

A practical method for large-deformation FE analysis was advised and was used for the first time to study the interaction between a concrete cut-off wall and high-plasticity clay in dam engineering. Large deformation in the high-plasticity clay was handled using the RITSS method. Moreover, the penetration process of the concrete cut-off wall into the high-plasticity clay was captured using a favourable element shape and mesh density.

Details

Engineering Computations, vol. 34 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 16 April 2024

Shuyuan Xu, Jun Wang, Xiangyu Wang, Wenchi Shou and Tuan Ngo

This paper covers the development of a novel defect model for concrete highway bridges. The proposed defect model is intended to facilitate the identification of bridge’s…

Abstract

Purpose

This paper covers the development of a novel defect model for concrete highway bridges. The proposed defect model is intended to facilitate the identification of bridge’s condition information (i.e. defects), improve the efficiency and accuracy of bridge inspections by supporting practitioners and even machines with digitalised expert knowledge, and ultimately automate the process.

Design/methodology/approach

The research design consists of three major phases so as to (1) categorise common defect with regard to physical entities (i.e. bridge element), (2) establish internal relationships among those defects and (3) relate defects to their properties and potential causes. A mixed-method research approach, which includes a comprehensive literature review, focus groups and case studies, was employed to develop and validate the proposed defect model.

Findings

The data collected through the literature and focus groups were analysed and knowledge were extracted to form the novel defect model. The defect model was then validated and further calibrated through case study. Inspection reports of nearly 300 bridges in China were collected and analysed. The study uncovered the relationships between defects and a variety of inspection-related elements and represented in the form of an accessible, digitalised and user-friendly knowledge model.

Originality/value

The contribution of this paper is the development of a defect model that can assist inexperienced practitioners and even machines in the near future to conduct inspection tasks. For one, the proposed defect model can standardise the data collection process of bridge inspection, including the identification of defects and documentation of their vital properties, paving the path for the automation in subsequent stages (e.g. condition evaluation). For another, by retrieving rich experience and expert knowledge which have long been reserved and inherited in the industrial sector, the inspection efficiency and accuracy can be considerably improved.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 5 May 2020

Qingfeng Meng, Yifan Zhang, Zhen Li, Weixiang Shi, Jun Wang, Yanhui Sun, Li Xu and Xiangyu Wang

The purpose of this paper is to summarize the current applications of BIM, the integration of related technologies and the tendencies and challenges systematically.

2565

Abstract

Purpose

The purpose of this paper is to summarize the current applications of BIM, the integration of related technologies and the tendencies and challenges systematically.

Design/methodology/approach

Using quantitative and qualitative bibliometric statistical methods, the current mode of interaction between BIM and other related technologies is summarized.

Findings

This paper identified 24 different BIM applications in the life cycle. From two perspectives, the implementation status of BIM applications and integrated technologies are respectively studied. The future industry development framework is drawn comprehensively. We summarized the challenges of BIM applications from the perspectives of management, technology and promotion, and confirmed that most of the challenges come from the two driving factors of promotion and management.

Research limitations/implications

The technical challenges reviewed in this paper are from the collected literature we have extracted, which is only a part of the practical challenges and not comprehensive enough.

Practical implications

We summarized the current mode of interactive use of BIM and sorted out the challenges faced by BIM applications to provide reference for the risks and challenges faced by the future industry.

Originality/value

There is little literature to integrate BIM applications and to establish BIM related challenges and risk frameworks. In this paper, we provide a review of the current implementation level of BIM and the risks and challenges of stakeholders through three aspects of management, technology and promotion.

Details

Engineering, Construction and Architectural Management, vol. 27 no. 8
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 28 July 2021

Gongwen Tang, Tingting Ren, Yi Wang, Zhishan Yan, Linrong Ma, Xiangyu Hou and Xin Huang

The purpose of this paper is to study the effect of the nano tube fillers on the corrosion protection properties of the self-curing epoxy (SEP) coatings.

110

Abstract

Purpose

The purpose of this paper is to study the effect of the nano tube fillers on the corrosion protection properties of the self-curing epoxy (SEP) coatings.

Design/methodology/approach

The self-curing epoxy (SEP) resin was synthesized via a reaction between diisopropoxy-bis ethylacetoacetato titanate and the epoxy resin. Halloysite nanotubes (HNTs) was surface modified by grafting (3-glycidoxypropyl) trimethoxysilane to obtain modified HNTs (mHNTs). The HNTs and mHNTs are used as nano tube fillers for the SEP coating. The thermal stability of the coatings was assessed via thermo-gravimetric analysis. The field-emission scanning electron microscopy (SEM) was conducted to analyze the surfaces and cross sections of the coatings. The anticorrosive efficiencies of the coatings were investigated by electrochemical measurements and a neutral salt spray test.

Findings

The results demonstrated that the additions of HNTs and mHNTs have little effect on the thermal degradation temperature of the SEP coating. However, the addition of the nanotubes reduced the corrosion resistance of the SEP coating.

Originality/value

The SEP coating itself showed excellent corrosion resistance without any reinforcement particles and is hence promising for application in the heavy-duty anticorrosion field of heat exchangers.

Details

Pigment & Resin Technology, vol. 51 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 37